AIRS water vapor retrieval optimization using ARM CART SGP, TWP and NSA best estimate profiles

Antonia Gambacorta (a), Chris Barnet (b),
Dave Tobin ©, Leslie Moy ©, Scott Hannon (a)
, Larrabee Strow (a), Dave Whiteman (d)

AIRS Science Meeting 09-27-2006

- a) University of Maryland Baltimore County, Baltimore, MD 21250, USA,
- b) NOAA/NESDIS, Camp Springs, MD 20746, USA,
- c) University of Wisconsin, Madison, WI 53706, USA,
- d) Mesoscale Atmospheric Processes Branch, NASA/GSFC, Greenbelt, MD 20771,USA

Objectives

 I. Background: AIRS water vapor and temperature retrieval validation

 II. Updates: AIRS water vapor retrieval optimization

Motivations

- Water vapor positive-negative feedback in the global climate change: more than one decade of controversy
- Outgoing longwave radiation & water vapor: OLR is strongly sensitive to changes in water vapor, particularly in the upper troposphere layers from which much of the OLR escapes
- Role of UT in the Water Vapor feedback: of the total feedback from water vapor, current climate models predict that roughly two-thirds originate from the UT where humidity is relatively low.

I. AIRS water vapor and temperature retrieval validation

Latest validation results

 Pre-launch accuracy requirement: 20%, with the goal of 10% in 2 km layer thickness below 100 mbar

Validation 1. (M. Divakarla et al.) :

Land: 25% (surface) – 45% (UT)

Sea: 15%(surface) – 35% (UT)

Validation 2. (D. Tobin et al.):
 SGP (97.5W, 36.6N), TWP (166.9E, 0.5S) , NSA (156.6W,71.3N)

Water Vapor RMS:

- ~25% below 500mbar, increasing to ~35% at 200mbar (SGP)
- ~10% below 400mbar, increasing to ~20% at 200mbar (TWP)

Water Vapor BIASES:

- ~5% below 400mbar, increasing to ~-10% at 300mbar (SGP)
- ~5% below 400mbar, increasing to ~10% at 300mbar (TWP)

(2002-2004) – within 2 hours from overpass - 120km collocation

Spatial gradient characterization (TWP)

RMS spatial gradient in radiosonde-retrieval comparison

Spatial gradient characterization (SGP)

RMS spatial gradient in radiosonde-retrieval comparison

Spatial gradient characterization (NSA)

RMS spatial gradient in radiosonde-retrieval comparison

II. AIRS Water Vapor retrieval optimization

AIRS water vapor retrieval algorithm optimizations

- The AIRS Product Retrieval Software (APS) has been designed to derive several geophysical parameters including temperature and water vapour profiles, IR and microwave surface emissivity, total ozone and cloud parameters.
- This module solves for the solution of the linearized radiative transfer equation :

$$\Delta X_{L} = S_{n,L}^{-1} \cdot \Delta R_{n}$$

Possible optimization parameters:

- Regularization factor
- -Perturbation Functions
 - -Retrieval channel list

Regularization factor optimization

(20% biased regression result)

...+ Perturbation functions optimization

(20% biased regression result)

...+ Water channel list optimization

(20% biased regression result)

Comprehensive results

Conclusions toward version 6

Over-damping in present configuration

Adjustments in perturbation functions

 Possibility of capturing more information by adding more channels

Back up slides

New channels

	NSA	nsa pwat	comments	TWP	pwat	comments	SGP	pwat
1135.50	+		imp below 4	+	666		+	845
879.09	+	surface		+	900		++	surface
878.77	+			++			+	
774.99	+	surf		+	815		+	surf
780.15	+	surf		++	851		+	surf
839.92	+	surf			755	litt prob	+++	995
852.41	+	surf		++	686		+	889
878.44	+			++			++	

AIRS water vapor retrieval algorithm optimizations

- The AIRS Product Retrieval Software (APS) has been designed to derive several geophysical parameters including temperature and water vapour profiles, IR and microwave surface emissivity, total ozone and cloud parameters.
- This module solves for the solution of the linearized radiative transfer equation :

$$\Delta X_{L} = S_{n,L}^{-1} \cdot \Delta R_{n}$$

$$\Delta \mathbf{X}_L = [S_{L,n}^T \cdot W_{n,n} \cdot S_{n,L} + H_{L,L}]^{-1} \cdot S_{L,n}^T \cdot W_{n,n} \cdot (\Delta R_n - \phi_n)$$

Possible optimization parameters:

- Channels Selection
- Perturbation Functions
 - Regularization factor

Damping parameter

$$\Lambda_{k,k}^{s,i} \equiv \left(U_{k,j}^T \right)^{s,i} \left(S_{j,n}^T \right)^{s,i} \left(N_{n,n}^s \right)^{-1} S_{n,j}^{s,i} U_{j,k}^{s,i}$$

$$\Delta \mathbf{X}_{L}^{s,i} = U_{k}^{s,i} \cdot \frac{1}{\Lambda_{k}^{s,i}} \cdot \left(U_{k}^{s,i}\right)^{s} \cdot \left(S_{k}^{s,i}\right)^{s} \cdot \left(W_{n,n}^{s,i}\right) \Delta R_{n}^{s,i-1}$$

Define Lambda critical = Define ΔX max

$$\Delta X$$
 max λ_c^S (less) damping

Implications

OLR differences of xx in rms, and yy in bias

```
a02asc:
OLR (W/m^2) 3 solutions 1 points 0 stats
         guess 1 OLR 1
                               OLR 2
   true
   mean bias rms err bias rms err bias rms err
  263.91 -27.68 29.61 -14.07 19.33 -6.76 16.65
COLR (W/m^2) 3 solutions 1 points 0 stats
         quess 1 OLR 1
                               OLR 2
   true
   mean bias rms err bias rms err bias rms err
  263.91 -13.97 16.09 -3.95 9.26 1.40 8.18
a96asc:
OLR (W/m^2) 3 solutions 1 points 0 stats
         quess 1
                OLR 1
                               OLR 2
   true
   mean bias rms err bias rms err bias rms err
  263.91 -27.68 29.61 -14.07 19.33 -6.67 16.59
COLR (W/m^2) 3 solutions 1 points 0 stats
         guess 1 OLR 1
                               OLR 2
   true
   mean bias rms err bias rms err bias rms err
  263.91 -13.97 16.09 -3.95 9.26
                                 1.56 8.22
```

 Total Column Water improvement of ~5% for SGP and TWP sites